Ta có :
\(\sqrt{4a^2+12}=\sqrt{4a^2+4ab+2c\left(a+b\right)}=\sqrt{\left(2a+c\right)\left(2a+2b\right)}\)
\(\le\frac{4a+2b+c}{2}\)
Tương tự : \(\sqrt{4b^2+12}\le\frac{4b+2a+c}{2}\); \(\sqrt{c^2+12}=\sqrt{\left(2a+c\right)\left(2b+c\right)}\le\frac{2a+2b+2c}{2}\)
\(\Rightarrow\sqrt{4a^2+12}+\sqrt{4b^2+12}+\sqrt{c^2+12}\le\frac{4a+2b+c+4b+2a+c+2a+2b+2c}{2}\)
\(=4a+4b+2c\)
\(\Rightarrow\frac{2a+2b+c}{\sqrt{4a^2+12}+\sqrt{4b^2+12}+\sqrt{c^2+12}}\ge\frac{2a+2b+c}{4a+4b+2c}=\frac{1}{2}\)
Dấu "=" xảy ra khi a = b = 1 ; c = 2