BN
   278 lượt xemTrướcSau

Cho tam giác ABC nhọn (AB > AC), nội tiếp đường tròn (O; R). Các tiếp tuyến tại B và C cắt nhau tại M. Gọi H là giao điểm của OM và BC. Từ m kẻ đường thẳng song song với AC, đường thẳng này cắt (O) tại E và F (E thuộc cung nhỏ BC), cắt BC tại I, cắt AB tại K
a) Chứng minh: MO vuông góc BC và ME.MF = MH.MO
b) Chứng minh rằng tứ giác MBKC là tứ giác nội tiếp. Từ đó suy ra 5 điểm M, B, K, O, C cùng thuộc một đường tròn
c) Đường thẳng OK cắt O tại N và P (N thuộc cung nhỏ AC). Đường thẳng PI cắt O tại Q (Q khác P). Chứng minh ba điểm M, N, Q thẳng hàng


Các câu hỏi tương tự
CB
Xem chi tiết
HV
Xem chi tiết
TA
Xem chi tiết
LC
Xem chi tiết
DH
Xem chi tiết
NP
Xem chi tiết
DH
Xem chi tiết
NN
Xem chi tiết
CD
Xem chi tiết
PB
Xem chi tiết