Bài 4: Đường tiệm cận

NT

26. Tìm số đường tiệm cận ngang và số đường tiệm cận đứng của đồ thị hàm số y = \(\dfrac{\sqrt{x-1}}{x^2-3x+2}\)

NL
2 tháng 9 2021 lúc 19:42

\(\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{x-1}}{x^2-3x+2}=\lim\limits_{x\rightarrow+\infty}\dfrac{\sqrt{\dfrac{1}{x^3}-\dfrac{1}{x^4}}}{1-\dfrac{3}{x}+\dfrac{2}{x^2}}=0\)

\(\Rightarrow y=0\) là tiệm cận ngang

\(\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x-1}}{x^2-3x+2}=\lim\limits_{x\rightarrow1^+}\dfrac{1}{\sqrt{x-1}\left(x-2\right)}=\infty\)

\(\Rightarrow x=1\) là tiệm cận đứng

\(\lim\limits_{x\rightarrow2}\dfrac{\sqrt{x-1}}{x^2-3x+2}=\dfrac{1}{0}=\infty\)

\(\Rightarrow x=2\) là tiệm cận đứng

ĐTHS có 1 TCN và 2 TCĐ

Bình luận (0)

Các câu hỏi tương tự
MN
Xem chi tiết
SK
Xem chi tiết
NT
Xem chi tiết
LH
Xem chi tiết
TT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
NT
Xem chi tiết
TT
Xem chi tiết