Lời giải:
Gọi tổng trên là $A$
$A=2(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{199.200})$
$=2(\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{200-199}{199.200})$
$=2(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{199}-\frac{1}{200})$
$=2(\frac{1}{2}-\frac{1}{200})=1-\frac{1}{100}=\frac{99}{100}$