Tính \(1\frac{1}{2}+2\frac{2}{3}+3\frac{3}{4}+4\frac{4}{5}+...+50\frac{50}{51}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{51}\)
1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+1/(1+2+3+4+5)...+1/(1+2+3+4+5...+99)+1/50 là:
tinh 1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+4+...+99)+1/50
\(1\frac{1}{2}+2\frac{2}{3}+3\frac{3}{4}+...+50\frac{50}{51}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...\frac{1}{51}\)
\((^1/1+2) + (^1/1+2+3) + (^1/1+2+3+4) +...+(^1/1+2+3+4+...+99) + (^1/50)\)
1/1+2 + 1/1+2+3 + 1/1+2+3+4 + ... + 1/1+2+3+4+...+99 +1/50 ( cach giai )
1/1+2+1/1+2+3+1/1+2+3+4+............................+1/1+2+3+..........................+99+1/50
1/1*2*3+1/2*3*4+1/3*4*5+...+1/50*51*52
Tính
\(S^4=1^2+2^2+3^2+...+49^2+50^2\)
\(S^5=1^3+2^3+3^3+...+49^3+50^3\)