(1/2012+1/2013-1/2014)/(5/2012+5/2013-5/2014)-(2/2103+2/2014-2/2015)/(3/2013+3/2014-3/2015)
A=2014+[2014:(1+2)]+[2014:(1+2+3)]+[2014:(1+2+3+4)]+...++[2014:(1+2+3+...+2013)]
2014+(2014/1+2)+(2014/1+2+3)+...+(2014/1+2+3+4+5+...+2013)=???.Ai giai duoc vay???
1/1*2+1/3*2+1/5*6+.....+1/2013*2014
-------------------------------------------------------
1/1008*2014+1/1009*2013+1/1010*2012+....1/2014*2018
Tính:
A= 2014 + \(\frac{2014}{1+2}+\frac{2014}{1+2+3}+\frac{2014}{1+2+3+4}+........+\frac{2014}{1+2+3+4+.....+2013}\)
Tính Tổng:
A = 2014 + \(\frac{2014}{1+2}+\frac{2014}{1+2+3}+.....+\frac{2014}{1+2+3+...+2013}\)
Tính B = 2014/1 + 2013/2 + 2013/3 + ... + 1/2014
\(A=\frac{\left(1-2\right).\left(1+2\right)}{2^2}.\frac{\left(1-3\right).\left(1+3\right)}{3^2}.......\frac{\left(1-2013\right).\left(1+2013\right)}{2013^2}.\frac{\left(1-2014\right).\left(1+2014\right)}{2014^2}\)
So sánh A và B biết:
\(A=\frac{2014^{2014}+1}{2014^{2015}+1}\)
\(B=\frac{2014^{2013}+1}{2014^{2014}+1}\)
Mình làm thế này có đúng không:
Ta có: \(A=\frac{2014^{2014}+1}{2014^{2015}+1}=\frac{2014^{2014}\cdot1+1}{2014^{2014}\cdot2014+1}=\frac{1+1}{2014+1}\) (1)
\(B=\frac{2014^{2013}+1}{2014^{2014}+1}=\frac{2014^{2013}\cdot1+1}{2014^{2014}\cdot2014+1}=\frac{1+1}{2014+1}\)(2)
Từ (1) và (2) suy ra A=B
Các bạn cho mình ý kiến nhoa ^^