Ta có \(A=\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}\)
=> \(A=\left(1-\frac{1}{2010}\right)+\left(1-\frac{1}{2011}\right)+\left(1-\frac{1}{2012}\right)+\left(1-\frac{1}{2013}\right)\)
\(\Rightarrow A=\left(1+1+1+1\right)-\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}\right)\)
\(\Rightarrow A=4-\left(\frac{1}{2010}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{2013}\right)< 4=B\)
=> A < B