TX

2, cho x,y là những số nguyên lớn hơn 1 sao cho \(4x^2y^2-7x+7y\)là số chính phương. CMR x=y

TM
22 tháng 11 2017 lúc 14:57

Ta có:\(n=4x^2y^2-7x+7y=\left(2xy-1\right)^2+4xy-7x+7y-1>\left(2xy-1\right)^2\)

\(n=\left(2xy+1\right)^2-4xy+7y-7x-1< \left(2xy+1\right)^2\)

\(\Rightarrow\left(2xy-1\right)^2< n< \left(2xy+1\right)^2,\)mà \(n\)là số chính phương nên ta có:

\(n=\left(2xy\right)^2\Leftrightarrow4x^2y^2-7x+7y=4x^2y^2\Leftrightarrow x=y\left(đpcm\right)\)

Bình luận (0)

Các câu hỏi tương tự
NM
Xem chi tiết
HT
Xem chi tiết
TP
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
BD
Xem chi tiết
NK
Xem chi tiết
HL
Xem chi tiết