2: Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC (H thuộc BC). Gọi N là
trung điểm của AC.
a) Chứng minh △ABH=△ACH
b) Hai đoạn thẳng BN và AH cắt nhau tại G, trên tia đối của tia NB lấy K sao cho
NK NG . Chứng minh AG//CK .
b) Chứng minh G là trung điểm của BK.
c) Gọi M là trung điểm AB. Chứng minh BC+AG=4GM
a, △ABH=△ACH (ch-cgv) (tự cm)
hoặc △ABH=△ACH (ch-gn) (tự cm)
b, Xét \(\Delta ANG\) và \(\Delta CNK\) có:
AN = CN ( vì N là tđ của AC)
ANG = CNK ( vì đđ)
GN = KN (gt)
=> \(\Delta ANG=\Delta CNK\) (c-g-c).
=> GAN = KCN (hai góc t/ứng).
Mà GAN và KCN ở vị trí slt nên:
=> AG//CK (đpcm).
c, Do tam giác ABC có: N là tđ của AC nên:
=> BN là đg trung tuyến của AC cắt AH tại G (1)
Do tam giác ABC có: AH vừa là đg cao nên:
=> AH cũng là đg trung tuyến của BC (t/ch trong tam giác cân) (2)
Xét \(\Delta ABC\) có: Từ (1) và (2) => G là trọng tâm của \(\Delta ABC\)
=> \(BG=2GN\) (3)
Ta có: GN + NK = GK
hay GN + GN = GK
=> GK = 2GN (4)
Từ (3) và (4) => BG = GK
=> G là tđ của BK (đpcm)
Câu d có vấn đề nhờ bạn xem lại cho mk cái!
Chúc bạn học tốt! Nhớ theo dõi cho mk vs ạ.