Rút gọn thành một lũy thừa
a) \(2^5\) . \(2^7\)
b) \(2^3\) . \(2^2\)
c) \(2^4\) . \(2^3\) . \(2^5\)
d) \(2^2\) . \(2^4\) . \(2^6\) . \(2\)
e) \(2\) . \(2^3\) . \(2^7\) . \(2^4\)
f) \(3^8\) . \(3^7\)
g) \(3^2\) . \(3\)
h) \(3^4\) . \(3^2\) . \(3\)
i) \(3\) . \(3^5\) . \(3^4\) . \(3^2\)
nhanh, giải chi tiết thì tớ tick cho
A= 2+2^2+2^3+...+2^19+2^20
b=2+2^3+2^5+...2^97+2^99
C=5+5^2+5^3+...+5^50
D=1+3+3^2+3^3+...+3^100
Điền vào ô vuông các dấu thích hợp (=, <,>)
1^2 ... 1
2^2 ... 1+3
3^2 ...1+3+5
1^3 ... 1^2 - 0^2
2^3 ... 3^2 - 1^2
3^3 ... 6^2 - 3^2
4^3 ... 10^2 - 6^2
(0+1)^2 ... 0^2 + 1^2
(1+2)^2 ... 1^2 + 2^2
(2 + 3)^2 ... 2^3 + 3^2
Chứng minh rằng:
a,A=1/2+1/2^2+1/2^3+.+1/2^2<1
b,B=1/3+1/3^2+1/3^3+...+1/3^n<1/2
c,B=1/2-1/2^2+1/2^3-1/2^4+...+1/2^2015-1/2^2016<1/3
d,D=1/3+2/3^2+3/3^3+4/3^4+...+100/3^100<3/4
A = 1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7 + 2^8 + 2^9 + 2^10 B = 1 + 3 + 3^2 + 3^3 + 3^4 + ... + 3^100.
A=1/2+2/2^2+3/2^3+...+100/2^100
B=1/3+2/3^2+3/3^2+...+100/3^100
Cho A=1/2+3/2+3/2^2+(3/2)^2+(3/2)^3+...+(3/2)^2012 và B=(3/2)^2013:2
Tính B-A.
[1/2+3/2+(3/2)^2+(3/2)^3+...+(3/2)^2017]-(3/2)^2018:2
1.Tính tổng
a) S = 1 + 2 + 2^2 + 2^3 + ... + 2^2022
b) S = 3 + 3^2 + 3^3 + ... + 3^2022
c) S = 4 + 4^1 + 4^2 + 4^3 + ... + 4^2022
d) S = 5 + 5^2 + 5^3 + ... + 5^2022
2.Tính tổng A = 1^2 + 2^2 + 3^3 + ... + 20^2
3.Tìm X
a) 2^X + 2^X+3 = 5^2
b) (X - 5)^2022 = (X - 5)^2021
c) (2 . X + 1)^3 = 9 . 81
4.Tìm tập hợp các số tự nhiên X, biết rằng 5^2X-1 thỏa mãn điều kiện 100 < 5^2X-1 < 5^6
5.So sánh
a) 3^2N và 2^3N
b)199^20 và 2003^15
Cho A=1/2+3/2+(3/2)^2+(3/2)^3+...+(3/2)^2012 và B=(3/2)^2013 / 2