Số hạng thứ 50 của dãy là: \(\frac{1}{100.102}\)
Tổng 50 số hạng đầu của dãy là:\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+.....+\frac{1}{100.102}=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+....+\frac{1}{100}-\frac{1}{102}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{102}\right)=\frac{1}{2}.\frac{25}{51}=\frac{25}{102}\)
phân số thứ 50 là 1/98.100
1/2.4+1/4.6+1/6.8+.......+1/98.100
=2.(1/2-1/4+1/4-1/6+1/6-1/8+.........+1/98-1/100).1/2
=(1-1/2+1/2-1/3+1/3-1/4+...........+1/49-1/50).1/2
=(1-1/50).1/2
=49/50.1/2
=49/100