TQ

1)Tinh giá trị của \(\frac{X+Y}{X-Y}\)biết X>Y>0 và \(X^2+Y^2=3XY\)

 

TL
19 tháng 12 2016 lúc 19:33

Có: \(\left(\frac{x+y}{x-y}\right)^2=\frac{x^2+y^2+2xy}{x^2+y^2-2xy}=\frac{3xy+2xy}{3xy-2xy}=5\)

Mà: \(x>y>0\Rightarrow x+y>0;x-y>0\)

\(\Rightarrow\frac{x+y}{x-y}>0\)

Do đó \(\frac{x+y}{x-y}=\sqrt{5}\)

Bình luận (0)

Các câu hỏi tương tự
MZ
Xem chi tiết
HN
Xem chi tiết
NV
Xem chi tiết
LL
Xem chi tiết
CP
Xem chi tiết
TG
Xem chi tiết
NA
Xem chi tiết
AA
Xem chi tiết
SP
Xem chi tiết