\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}\)=\(-4\)
<=>\(\left(\frac{x+1}{99}+1\right)+\left(\frac{x+2}{98}+1\right)+\left(\frac{x+3}{97}+1\right)+\left(\frac{x+4}{96}+1\right)=0\)=>\(\frac{x+1+99}{99}+\frac{x+2+98}{98}+\frac{x+3+97}{97}+\frac{x+4+96}{96}=0\)
=>\(\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}=0\)
=>\(\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\right)=0\)
Vì: \(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\)
=>\(x+100=0\)
\(x=0-100\)
\(x=-100\)
Vậy \(x=-100\)