b khác 0 . Chia cả tử và mẫu của A cho b ta được
\(A=\frac{2015.\frac{a}{b}+1}{2015.\frac{a}{b}-1}\). Đặt a/b = y. y \(\le1\) vì a \(\le b\)
=> \(A=\frac{2015.y+1}{2015.y-1}=\frac{2015y-1+2}{2015y-1}=1+\frac{2}{2015y-1}\)
Vì y \(\le1\) => 2015y -1 \(\le\) 2014 => \(\frac{2}{2015y-1}\ge\frac{2}{2014}=\frac{1}{1007}\Rightarrow A\ge1+\frac{1}{1007}=\frac{1008}{1007}\)
Vậy A nhỏ nhất bằng 1008/1007 khi y = 1 => a /b = 1 => a = b