Bài 3: Rút gọn phân thức

HN

1.Rút gọn phân thức:

\(\dfrac{\text{x^7+ x^6 + x^5+ x^4+ x^3 + x^2+ x +1 }}{x^2-1}\)

2. SD hằng đẳng thức để biến đổi và rút gọn phân thức sau:

\(\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)

H24
10 tháng 11 2017 lúc 21:49

1. Ta có: \(\dfrac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\)

\(=\dfrac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{\left(x+1\right)\left(x^6+x^4+x^2+1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{\left(x^6+x^4+x^2+1\right)}{\left(x-1\right)}\)

\(=\dfrac{x^4\left(x^2+1\right)+x^2+1}{x-1}\)

\(=\dfrac{\left(x^2+1\right)\left(x^4+1\right)}{x-1}\)

2.Ta có: \(\dfrac{x^2+y^2+z^2-2xy+2xz-2xz}{x^2-2xy+y^2-z^2}\)

\(=\dfrac{\left(x-y+z\right)^2}{\left(x-y\right)^2-z^2}=\dfrac{\left(x-y+z\right)\left(x-y+z\right)}{\left(x-y-z\right)\left(x-y+z\right)}=\dfrac{x-y+z}{x-y-z}\)

_Chúc bạn học tốt_

Bình luận (0)
TL
11 tháng 11 2017 lúc 15:50

\(\text{1) }\dfrac{x^7+x^6+x^5+x^4+x^3+x^2+x+1}{x^2-1}\\ =\dfrac{\left(x^7+x^6\right)+\left(x^5+x^4\right)+\left(x^3+x^2\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^6\left(x+1\right)+x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{\left(x+1\right)\left(x^6+x^4+x^2+1\right)}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{x^6+x^4+x^2+1}{\left(x-1\right)}\\ \)

\(\text{2) }\dfrac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\\ =\dfrac{\left(x^2-2xy+y^2\right)+\left(2xz-2yz\right)+z^2}{\left(x^2-2xy+y^2\right)-z^2}\\ =\dfrac{\left(x-y\right)^2+2z\left(x-y\right)+z^2}{\left(x-y\right)^2-z^2}\\ =\dfrac{\left(x-y+z\right)^2}{\left(x-y+z\right)\left(x-y-z\right)}\\ =\dfrac{x-y+z}{x-y-z}\)

Bình luận (0)

Các câu hỏi tương tự
PH
Xem chi tiết
TC
Xem chi tiết
VC
Xem chi tiết
DC
Xem chi tiết
TN
Xem chi tiết
KV
Xem chi tiết
TN
Xem chi tiết
LH
Xem chi tiết
DT
Xem chi tiết