1)\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
2)\(=2\left(\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{2008.2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
\(=2\left(\frac{1}{2}-\frac{1}{2010}\right)\)
\(=2\times\frac{502}{1005}\)
\(=\frac{1004}{1005}\)
tự làm tiếp nhé
1.= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
= \(1-\frac{1}{101}\) = \(\frac{100}{101}\)
2.= \(2\cdot\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{2008\cdot2010}\right)\)
= \(2\cdot\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2008}-\frac{1}{2010}\right)\)
= \(2\cdot\left(\frac{1}{2}-\frac{1}{2010}\right)\) = \(2\cdot\frac{502}{1005}\) = \(\frac{1004}{1005}\)
a)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)
b)\(\frac{4}{2.4}+\frac{4}{4.6}+\frac{4}{6.8}+..+\frac{4}{2008.2010}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1004.1005}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1004}-\frac{1}{1005}=1-\frac{1}{1005}=\frac{1004}{1005}\)
c)\(\frac{1}{2}.\left(\frac{1}{8}+\frac{1}{24}+\frac{1}{48}+...+\frac{1}{9800}\right)=\frac{1}{4}.\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{98.100}\right)=\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{100}\right)=\frac{49}{400}\)