1.CMR trong tất cả các số có 4 chữ số khác nhau được lập bởi các chữ số 1;2;3;4 không có 2 số nào mà 1 số chia hết cho 2 số còn lại
2.CMR (n-1).(n+2)+12 không chia hết cho 9 với mọi n thuộc N
3.CMR không tồn tại n thuộc N thỏa mãn 20142014+1 chia hết cho n3+2012n
CMR trong tất cả các số có 4 chữ số khác nhau được lập bởi các chữ số 1;2;3;4 không có 2 số nào mà 1 số chia hết cho 2 số còn lại
1.CMR trong 12 số tự nhiên bất kì có thể tìm đc 2 số có hiệu của chúng chia hết cho 11
2.CMR trong 15 số tự nhiên bất kì có thể tìm đc 2 số có hiệu của chúng chia hết cho 14
3.CM tồn tại 1 số chia hết cho 1995 mà các chữ số của số đó chỉ gồm các chữ số 2 và chữ số 0
4.CMR nếu có n số tự nhiên có tích bằng n và có tổng bằng 2012 thì n chia hết cho 4
5.tìm số tự nhiên n sao cho :
a) n+3 chia hết cho n-2 ( n>2)
b)2n+9 chia hết cho n-3 ( n>3)
c)(16-3n ) chia hết cho (n+4) với n<6
d) (5n+2) chia hết cho (9-2n)
42) a) Khi chia stn a cho 9,ta được số dư là 6.Hỏi số a có chia hết cho 3 không?
b) Khi chia stn a cho 12,ta được số dư là 9.Hỏi số a có chia hết cho 3 không? có chia hết cho 6 ko?
c) số 30.31.32.33.....40+111 có chia hết cho 37 không?
46)
a) Tích của 2 stn liên tiếp là 1 số chia hết cho 2
b) Với mọi n thuộc N , chứng tỏ rằng : n.(n+3) chia hết cho 2
c) với mọi n thuộc N ,chứng tỏ rằng :n^2+n+1 khong chia het cho 2
chứng minh rằng trong tất cả các số có 4 chữ số khác nhau được lập bởi các chữ số 1;2;3;4 không có 2 số nào mà 1 số chia hết cho 2 số còn lại
1.CMR với mọi số tự nhiên n khác 0 ta đều tìn được 1 số tự nhiên biểu diễn bởi các chữ số 0 và 1 chia hết cho n
2.Cho n+1 số nguyên dương nhỏ hơn 2n.CMR có thể chọn ra 3 số mà 1 số bằng tổng 2 số còn lại
CM: Trong tất cả các số tự nhiên khác nhau có 7 chữ số được lập bởi các chữ số 1; 2; 3; 4; 5; 6; 7 không có hai số nào mà 1 số chia hết cho số còn lại.
1,các số sau có cp ko
a, A=2+2^2+2^3+2^4+.......+2^20
b,B=5+5^2+5^3+5^4+..........+5^100
2,cmr nếu tổng các c/s của 1 số cp ko chia hết cho 9 thì ko chia hết cho 6
3'cho 5 số cp bất kì có c/s hàng đơn vị là 6. Cmr tổng các c/s hàng chục của 5 c/s trên là 1 số cp
Bài 1 : CMR : 22...2(n chữ số 2) + 7n chia hết cho 9
Bài 2 : CMR với mọi số tự nhiên ta có:
a) (n.n + 2 ). (n + 7 )
b) 5n -1 chia hết cho 4
c) n^2 + n + 2 không chia hết cho 5