Violympic toán 9

H24

1.Cho x\(\ge\)1 tìm Min P \(=3x+\frac{1}{2x}\)

2.Cho a\(\ge\)10;b\(\ge\)100;c\(\ge\)1000 tìm Min P \(=a+\frac{1}{a}+b+\frac{1}{b}+c+\frac{1}{c}\)

3. Cho a,b>0 CMR : \(\frac{a}{b}+\frac{b}{a}+\frac{8ab}{\left(a+b\right)^2}\ge4\)

NL
1 tháng 8 2020 lúc 11:15

1.

\(P=\frac{x}{2}+\frac{1}{2x}+\frac{5x}{2}\ge2\sqrt{\frac{x}{4x}}+\frac{5}{2}.1=\frac{7}{2}\)

Dấu "=" xảy ra khi \(x=1\)

2.

\(P=\frac{a}{100}+\frac{1}{a}+\frac{b}{10000}+\frac{1}{b}+\frac{c}{1000^2}+\frac{1}{c}+\frac{99}{100}a+\frac{9999}{10000}b+\frac{999999}{1000000}c\)

\(P\ge2\sqrt{\frac{a}{100a}}+2\sqrt{\frac{b}{10000b}}+2\sqrt{\frac{c}{1000000c}}+\frac{99}{100}.10+\frac{9999}{10000}.100+\frac{999999}{1000000}.1000=...\)

Bạn tự bấm máy tính

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=10\\b=100\\c=1000\end{matrix}\right.\)

3.

\(VT=\frac{a^2+b^2}{ab}+\frac{8ab}{\left(a+b\right)^2}\ge\frac{\left(a+b\right)^2}{2ab}+\frac{8ab}{\left(a+b\right)^2}\ge2\sqrt{\frac{8ab\left(a+b\right)^2}{2ab\left(a+b\right)^2}}=4\)

Dấu "=" xảy ra khi \(a=b\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
BL
Xem chi tiết
AJ
Xem chi tiết
NM
Xem chi tiết
NO
Xem chi tiết
BL
Xem chi tiết
H24
Xem chi tiết
NO
Xem chi tiết
H24
Xem chi tiết