a/ Xet tam giác AND và tam giác CNB ta có :
AN = NC (N là trung điểm AC) (1)
ND = NB (gt) (2)
góc AND = góc CND (2 góc đối đỉnh) (3)
Từ (1),(2),(3) => Tam giác AND = tam giác CNB (c-g-c)
b/
Ta có :
AD = CB (Tam giác AND = tam giác CNB)
Ta có :
góc ADN = góc CBN (Tam giác AND = tam giác CNB)
mà ADN và góc CBN nằm ở vị trí so le trong
nên AD//BC
c/ Chứng minh A là trung điểm của DE
Ta có :
AD//BC(cm câu a) (1)
A thuộc ED (gt) (2)
Từ (1),(2) => DE//BC
Xét tam giác AME và tam giác BMC ta có :
AM = BM (M là trung điểm AB) (1)
góc AME = góc BMC (2 góc đối đỉnh) (2)
góc MAE = góc MBC (2 góc so le trong và DE //BC) (3)
Từ (1),(2),(3) => Tam giác AME = tam giácBMC (g-c-g)
=> AE = BC (2 cạnh tương ứng)
Ta có :
AE = BC (cmt) (1)
AD =CB (cm câu a) (2)
=> Từ (1),(2) => AE = AD
Ta có :
AE = AD (cmt) (1)
A thuộc DE (2)
Từ (1),(2) => A là trung điểm của đoạn thẳng DE