Ôn thi vào 10

NP

1)Cho pt: x2-2mx+2m-3=0

a)Tìm m để pt có nghiệm bằng -2. Tìm nghiệm còn lại

b)Tìm m để pt có 2 nghiệm đều dương

2)Một oto đi quãng đường AB dài 80km trong 1 thời gian đã định. 3434 quãng đường đầu oto chạy nhanh hơn dự định 10km/h. Quãng đường còn lại oto chạy chậm hơn dự định 15km/h. Biết rằng oto đến B đúng giờ quy định. Tính thời gian oto đi hết quãng đường AB?

3) Cho C là 1 điểm nằm trên đoạn thẳng AB (C ≠A, C≠B). Trên cùng một nửa mặt phẳng có bờ là đường thẳng AB kẻ 2 tia Ax, By cùng vuông góc với AB. Trên tia Ax lấy điểm I (I≠A), tia vuông góc với CI tại C cắt By tại K. Đường tròn đường kính IC cắt IK tại P

CM:

a)Tứ giác CPKB nội tiếp được đường tròn. Xác định tâm của tròn đó

b)AI.BK=AC.CB

c)Tam giác APB vuông

NT
10 tháng 5 2021 lúc 18:18

Bài 1: 

a) Thay x=-2 vào phương trình, ta được:

\(\left(-2\right)^2-2m\cdot\left(-2\right)+2m-3=0\)

\(\Leftrightarrow4+4m+2m-3=0\)

\(\Leftrightarrow6m=-1\)

hay \(m=-\dfrac{1}{6}\)

Áp dụng hệ thức Vi-et, ta được: 

\(x_1+x_2=2m\)

\(\Leftrightarrow x_2-2=\dfrac{-1}{3}\)

hay \(x_2=\dfrac{5}{3}\)

Bình luận (0)
NT
10 tháng 5 2021 lúc 18:21

Bài 1: 

b) Ta có: \(\Delta=\left(-2m\right)^2-4\cdot1\cdot\left(2m-3\right)\)

\(=4m^2-8m+12\)

\(=4m^2-2\cdot2m\cdot2+4+8\)

\(=\left(2m-2\right)^2+8>0\forall m\)

Do đó: Phương trình luôn có hai nghiệm phân biệt với mọi m

Áp dụng hệ thức Vi-et, ta được:

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1\cdot x_2=2m-3\end{matrix}\right.\)

Để phương trình có hai nghiệm đều dương thì

\(\left\{{}\begin{matrix}\Delta>0\\x_1+x_2>0\\x_1\cdot x_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2m>0\\2m-3>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>0\\2m>3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m>\dfrac{3}{2}\end{matrix}\right.\Leftrightarrow m>\dfrac{3}{2}\)

Bình luận (0)

Các câu hỏi tương tự
HN
Xem chi tiết
TN
Xem chi tiết
AD
Xem chi tiết
BH
Xem chi tiết
TN
Xem chi tiết
H24
Xem chi tiết
AQ
Xem chi tiết
PT
Xem chi tiết
NQ
Xem chi tiết