Ôn thi vào 10

BH

Cho nửa đường tròn tâm O, đường kính AB và M là một điểm tùy ý trên nửa đường tròn (M khác A, B). Lấy điểm I thuộc đoạn thẳng MB (I khác B, M). Kẻ IH vuông góc với AB (H thuộc AB). Tia AI cắt nửa đường tròn tại N. Tia AM cắt tia BN tại C

b)Gọi K là giao điểm của tia BN và tiếp tuyến tại A của nửa đường tròn (O). Khi tứ giác AICK nội tiếp được đường tròn, chứng minh MH vuông góc với MN.

 c) Chứng minh rằng: IH/ IC+ IA/ IN+ IB/ IM >6

TH
26 tháng 5 2021 lúc 12:12

b) Dễ thấy C là trực tâm của tam giác IAB nên C, I, H thẳng hàng.

Do tứ giác AICK là hình thang nội tiếp được đường tròn nên là hình thang cân.

Khi đó \(\widehat{IAK}=\widehat{CKA}\Rightarrow\widehat{IAB}=\widehat{NBA}\)

Suy ra tam giác NAB vuông cân tại N nên \(\widehat{NBA}=45^o\).

Ta có các tứ giác CMIN, AMIH nội tiếp được nên \(\widehat{NMH}=\widehat{NMI}+\widehat{HMI}=\widehat{ICN}+\widehat{IAB}=45^o+45^o=90^o\Rightarrow MN\perp MH\).

 

Bình luận (0)
TH
26 tháng 5 2021 lúc 12:16

undefined

c) Đề phải là \(\dfrac{IC}{IH}+\dfrac{IA}{IN}+\dfrac{IB}{IM}\ge6\).

Đặt \(x=\dfrac{IH}{CH};y=\dfrac{IN}{AN};z=\dfrac{IM}{BM}\left(x,y,z< 1\right)\).

Ta có \(x+y+z=\dfrac{S_{IAB}}{S_{ABC}}+\dfrac{S_{IBC}}{S_{ABC}}+\dfrac{S_{ICA}}{S_{ABC}}=1\).

Lại có \(\dfrac{IH}{CH}=x\Rightarrow\dfrac{CH}{IH}=\dfrac{1}{x}\Rightarrow\dfrac{IC}{IH}=\dfrac{1}{x}-1\).

Tương tự \(\dfrac{IA}{IN}=\dfrac{1}{y}-1;\dfrac{IB}{IM}=\dfrac{1}{z}-1\).

Do đó \(\dfrac{IC}{IH}+\dfrac{IA}{IN}+\dfrac{IB}{IM}=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-3\ge_{Svacxo}\dfrac{9}{x+y+z}-3=\dfrac{9}{1}-3=6\).

Vậy ta có đpcm.

Bình luận (0)

Các câu hỏi tương tự
CT
Xem chi tiết
WC
Xem chi tiết
TN
Xem chi tiết
18
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
AD
Xem chi tiết
SD
Xem chi tiết