Violympic toán 8

VT

1,cho các số dương x,y,z thỏa mãn xyz=1

Tìm giá trị lớn nhất của biểu thức \(Q=\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\)

NL
29 tháng 2 2020 lúc 21:11

Đặt \(\left(x;y;z\right)=\left(a^3;b^3;c^3\right)\Rightarrow abc=1\)

\(a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)\ge\left(a+b\right)\left(2ab-ab\right)=ab\left(a+b\right)\)

\(\Rightarrow Q\le\frac{1}{ab\left(a+b\right)+1}+\frac{1}{bc\left(b+c\right)+1}+\frac{1}{ca\left(c+a\right)+1}\)

\(Q\le\frac{abc}{ab\left(a+b\right)+abc}+\frac{abc}{bc\left(b+c\right)+abc}+\frac{abc}{ca\left(c+a\right)+abc}\)

\(Q\le\frac{c}{a+b+c}+\frac{a}{a+b+c}+\frac{b}{a+b+c}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\) hay \(x=y=z=1\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
NA
Xem chi tiết
DH
Xem chi tiết
TA
Xem chi tiết
NH
Xem chi tiết
KH
Xem chi tiết
H24
Xem chi tiết
AS
Xem chi tiết
NS
Xem chi tiết
MK
Xem chi tiết