Phân thức đại số

VN

1)Cho A,B,C>0.CMR:\(\dfrac{AB}{C}+\dfrac{AC}{B}+\dfrac{BC}{A}>A+B+C\)

2)CMR:A2+B2+C2+D2+4\(\ge2\left(A+B+C+D\right)\)

ND
17 tháng 4 2018 lúc 21:53

2)

Xét hiệu:

\(A^2+B^2+C^2+D^2+4-2A-2B-2C-2D\)

\(=\left(A^2-2A+1\right)+\left(B^2-2B+1\right)+\left(C^2-2C+1\right)+\left(D^2-2D+1\right)\)

\(=\left(A-1\right)^2+\left(B-1\right)^2+\left(C-1\right)^2+\left(D-1\right)^2\ge0\)

=> BĐT luôn đúng

Vậy \(A^2+B^2+C^2+D^2+4\ge2\left(A+B+C+D\right)\)

Bình luận (1)
ND
17 tháng 4 2018 lúc 22:06

1)

Áp dụng BĐT Cauchy cho 2 số không âm, ta có:

\(\dfrac{AB}{C}+\dfrac{BC}{A}\ge2\sqrt{\dfrac{AB}{C}.\dfrac{BC}{A}}=2B\) (1)

\(\dfrac{BC}{A}+\dfrac{AC}{B}\ge2\sqrt{\dfrac{BC}{A}.\dfrac{AC}{B}}=2C\) (2)

\(\dfrac{AB}{C}+\dfrac{AC}{B}\ge2\sqrt{\dfrac{AB}{C}.\dfrac{AC}{B}}=2A\) (3)

Từ (1)(2)(3) cộng vế theo vế:

\(2\left(\dfrac{AB}{C}+\dfrac{AC}{B}+\dfrac{BC}{A}\right)\ge2\left(A+B+C\right)\)

\(\Rightarrow\dfrac{AB}{C}+\dfrac{AC}{B}+\dfrac{BC}{A}\ge A+B+C\)

Bình luận (3)

Các câu hỏi tương tự
VH
Xem chi tiết
HK
Xem chi tiết
BL
Xem chi tiết
YT
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
AP
Xem chi tiết
CT
Xem chi tiết
DC
Xem chi tiết