NL

1.cho a,b,c là các số thực t/m \(a^3\)-\(b^2\)-b=\(b^3\)-\(c^2\)-c=\(c^3\)-\(a^2\)-a=\(\frac{1}{3}\)

c/m:a=b=c

2.cho a,b,c>0 và P=\(\frac{a^3}{a^2+ab+b^2}\)+\(\frac{b^3}{b^2+bc+c^2}\)+\(\frac{c^3}{c^2+ac+a^2}\)

Q=\(\frac{b^3}{a^2+ab+b^2}\)+\(\frac{c^3}{b^2+bc+c^2}\)+\(\frac{a^3}{c^2+ac+a^2}\)

a) c/m P=Q

b) cm:  P>=\(\frac{a+b+c}{3}\)

PN
10 tháng 2 2016 lúc 20:18

\(1.\)  Đang duyệt

\(2a.\)

Ta có: 

\(P-Q=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}-\frac{b^3}{a^2+ab+b^2}-\frac{c^3}{b^2+bc+c^2}-\frac{a^3}{c^2+ac+a^2}\)

\(\Leftrightarrow\)  \(P-Q=\frac{a^3-b^3}{a^2+ab+b^2}+\frac{b^3-c^3}{b^2+bc+c^2}+\frac{c^3-a^3}{c^2+ac+a^2}\)

\(\Leftrightarrow\)  \(P-Q=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a^2+ab+b^2}+\frac{\left(b-c\right)\left(b^2+bc+c^2\right)}{b^2+bc+c^2}+\frac{\left(c-a\right)\left(c^2+ac+a^2\right)}{c^2+ac+a^2}\)

\(\Leftrightarrow\)  \(P-Q=a-b+b-c+c-a\)  (do  \(a,b,c\ne0\)  )

\(\Leftrightarrow\)  \(P-Q=0\)

Vậy,  \(P=Q\)  \(\left(đpcm\right)\)

Bình luận (0)
PN
10 tháng 2 2016 lúc 19:56

\(1.\)

Theo đề bài, ta có:        

\(a^3=b^2+b+\frac{1}{3}\)  \(\left(1\right)\)

\(b^3=c^3+c^2+\frac{1}{3}\)  \(\left(2\right)\)

\(c^3=a^3+a^2+\frac{1}{3}\)  \(\left(3\right)\)

Vì  \(b^2+b+\frac{1}{3}=\left(b+\frac{1}{2}\right)^2+\frac{1}{12}\ge\frac{1}{12}>0\) nên từ \(\left(1\right)\)  \(\Rightarrow\)  \(a^3>0\) , tức là  \(a>0\)

Tương tự,  \(b,c>0\)

Do vai trò hoán vị của các ẩn \(a,b,c\)  là như nhau nên có thể giả sử  \(a=max\left\{a,b,c\right\}\)  hay  \(a\ge b\)   \(;\)  \(a\ge c\)

Do đó,

\(\text{+) }\) Từ  \(\left(1\right)\)  \(;\) \(\left(3\right)\) , ta có:

\(a^3=b^2+b+\frac{1}{3}\le a^2+a+\frac{1}{3}=c^3\)

Theo đó,  \(a^3\le c^3\)  hay \(a\le c\)  

Mà \(a\ge c\)  \(\left(cmt\right)\)

\(\Rightarrow\)  \(a=c\)   \(\left(\text{*}\right)\)

Lại có:

\(\text{+) }\) Từ \(\left(2\right)\)  \(;\) \(\left(3\right)\) , ta có:

\(b^3=c^2+c+\frac{1}{3}=a^2+a+\frac{1}{3}=c^3\)  (do  \(a=c\)  )

nên  \(b^3=c^3\) , tức là  \(b=c\)  \(\left(\text{**}\right)\)

Vậy, từ  \(\left(\text{*}\right)\)  và  \(\left(\text{**}\right)\) , suy ra  \(a=b=c\)  

Bình luận (0)

Các câu hỏi tương tự
NL
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết
TM
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
QT
Xem chi tiết