Ôn tập cuối năm phần số học

TN

1.Cho a,b,c >0. Chứng minh rằng:

\(\frac{4a^2+\left(b-c\right)^2}{2a^2+b^2+c^2}+\frac{4b^2+\left(c-a\right)^2}{2b^2+c^2+a^2}+\frac{4c^2+\left(a-b\right)^2}{2c^2+a^2^{ }+b^2}\ge3\)2.

Cho x,y,z là các số thực thỏa mãn 2 (y2 + yz + z2) + 3x2= 36. Tìm giá trị nhỏ nhất và lớn nhất của biểu thức A = x + y + z

NL
14 tháng 6 2020 lúc 18:18

\(x^2+y^2+z^2+2xy+2yz+2zx+2x^2-2x\left(y+z\right)+y^2+z^2=36\)

\(\Leftrightarrow\left(x+y+z\right)^2+2x^2-2x\left(y+z\right)+y^2+z^2=36\)

\(\Rightarrow\left(x+y+z\right)^2+2x^2-2x\left(y+z\right)+\frac{1}{2}\left(y+z\right)^2\le36\)

\(\Rightarrow\left(x+y+z\right)^2+\frac{1}{2}\left[4x^2-4x\left(y+z\right)+\left(y+z\right)^2\right]\le36\)

\(\Leftrightarrow\left(x+y+z\right)^2+\frac{1}{2}\left(2x-y-z\right)^2\le36\)

\(\Rightarrow\left(x+y+z\right)^2\le36-\frac{1}{2}\left(2x-y-z\right)^2\le36\)

\(\Rightarrow-6\le x+y+z\le6\)

\(A_{min}=-6\) khi \(x=y=z=-2\)

\(A_{max}=6\) khi \(x=y=z=2\)

Bình luận (0)

Các câu hỏi tương tự
VT
Xem chi tiết
MN
Xem chi tiết
HG
Xem chi tiết
LK
Xem chi tiết
TV
Xem chi tiết
H24
Xem chi tiết
MV
Xem chi tiết
VC
Xem chi tiết
HS
Xem chi tiết