\(\sqrt{x-1}\)>=0
=>x>=1
x2-3x-+2=(x-1)(x-2)>=0
mà x>=1
=>x>=2
=>19\(\sqrt{x-1}\)+5\(\sqrt[4]{x^2-1}\)+95\(\sqrt[6]{x^2-3x+2}\)>= 19+5=24 ( khác vs giả thiết
=> pt trên vô nghiệm..........
\(\sqrt{x-1}\)>=0
=>x>=1
x2-3x-+2=(x-1)(x-2)>=0
mà x>=1
=>x>=2
=>19\(\sqrt{x-1}\)+5\(\sqrt[4]{x^2-1}\)+95\(\sqrt[6]{x^2-3x+2}\)>= 19+5=24 ( khác vs giả thiết
=> pt trên vô nghiệm..........
giải phương trình : \(19^{\sqrt{x-1}}+5^{\sqrt[4]{x^2-1}}+95^{\sqrt[6]{x^2-3x+2}}=3\)
1\(\sqrt{5+2\sqrt{8}}-\sqrt{5-2\sqrt{8}}\) 2)\(\dfrac{\sqrt{x^2+2\sqrt{3x}+3}}{x^2-3}\) 3) \(\dfrac{\sqrt{x^2-5x+6}}{\sqrt{x-2}}\) 4)\(\dfrac{\sqrt{\left(x-4\right)^2}}{x^2-5x+4}\) 5) \(\dfrac{3x+1}{\sqrt{9x^2+6x+1}}\)
\(\left(5\right)\sqrt{x+3-4\sqrt{x-1}}\sqrt{x+8+6\sqrt{x-1}}=5\)
\(\left(6\right)2x^2+3x+\sqrt{2x^2+3x+9}=33\)
\(\left(7\right)\sqrt{3x^2+6x+12}+\sqrt{5x^4-10x^2+30}=8\)
\(\left(8\right)x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
Câu 2: Tìm x biết:
a. \(\sqrt{x-1}=2\)
b. \(\sqrt{3x+1}=\sqrt{4x-3}\)
c. \(\sqrt{4x+20}-3\sqrt{5+x}+\dfrac{4}{3}\sqrt{9x+45}=6\)
d. \(\sqrt{x^2-4x+4}=\sqrt{6+2\sqrt{5}}\)
1) \(x+1+\sqrt{x^2-4x+1}=3\sqrt{x}\)
2) \(4x^3+x-\left(x+1\right)\sqrt{2x+1}=0\)
3) \(x-\sqrt{x}=1-\sqrt{2\left(x^2-x+1\right)}\)
4) \(\sqrt{x+1}+\sqrt{4-x}+\sqrt{\left(x+1\right)\left(4-x\right)}=5\)
5) \(\sqrt{3x-2}+\sqrt{x-1}=4x-9+2\sqrt{3x^2-5x+2}\)
6) \(3\sqrt{x+2}-6\sqrt{2-x}+4\sqrt{4-x^2}=10-3x\)
a)Giải các phương trình sau bằng phương pháp đặt ẩn phụ:
1) \(x^2-3x-3=\frac{3\left(\sqrt[3]{x^3-4x^2+4}-1\right)}{1-x}\) ;2)\(1+\frac{2}{3}\sqrt{x-x^2}=\sqrt{x}+\sqrt{1-x}\)
b) Giải các phương trình sau(không giới hạn phương pháp):
1)\(2\left(1-x\right)\sqrt{x^2+2x-1}=x^2-2x-1\) ; 2)\(\sqrt{2x+4}-2\sqrt{2-x}=\frac{12x-8}{\sqrt{9x^2+16}}\)
3)\(\frac{3x^2+3x-1}{3x+1}=\sqrt{x^2+2x-1}\) ; 4) \(\frac{2x^3+3x^2+11x-8}{3x^2+4x+1}=\sqrt{\frac{10x-8}{x+1}}\)
5)\(13x-17+4\sqrt{x+1}=6\sqrt{x-2}\left(1+2\sqrt{x+1}\right)\);
6)\(x^2+8x+2\left(x+1\right)\sqrt{x+6}=6\sqrt{x+1}\left(\sqrt{x+6}+1\right)+9\)
7)\(x^2+9x+2+4\left(x+1\right)\sqrt{x+4}=\frac{5}{2}\sqrt{x+1}\left(2+\sqrt{x+4}\right)\)
8)\(8x^2-26x-2+5\sqrt{2x^4+5x^3+2x^2+7}\)
Bài 1:Tìm ĐKXĐ:
a.\(\sqrt{3x}\)
b.\(\sqrt{\dfrac{x-1}{x+3}}\)
Bài 2:Thực hiện phép tính:
C=\(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)
Bài 3:
A=(1-\(\dfrac{\sqrt{x}}{\sqrt{x}+2}\)):(\(\dfrac{1}{\sqrt{x}-2}-\dfrac{2}{x-4}\)) với x>0;x≠4
a.Rút gọn A
b.Tính giá trị của A khi x =\(\dfrac{1}{4}\)
c. Chứng minh A<2
d.Tìm giá trị nguyên của x để A nguyên.
Trả lời giúp mình với ạ!Mình cảm ơn nhiều!
\(\sqrt{2X^2+3X-2}-3\sqrt{X+6}=4-\sqrt{2X^2+11X-6}+3\sqrt{X+2}\)
\(\sqrt{3X^2-7X+3}-\sqrt{X^2-2}=\sqrt{3X^2-5X-1}-\sqrt{X^2-3X+4}\)
\(8x^2+\sqrt{3x^2+6x+5}=74-\sqrt{36x-5}\)
Giải phương trình:
a) \(\sqrt{x}+\sqrt{x+1}+2\sqrt{x^2+x}=35-2x\)
b) \(\sqrt{x^2+x+7}+\sqrt{x^2+x+2}=\sqrt{3x^2+3x+19}\)
c) \(1-\sqrt{x+\sqrt{1+x}+1}=\sqrt{x+1}\)
d) \(x^2+3-\sqrt{2x^2-3x+2}=\frac{3}{4}x+6\)
e) \(\sqrt{\left(1+x\right)\left(2-x\right)}=1+2x-x^2\)