\(\dfrac{1998.1996+1997+1995}{1997.1996-1995.1996}\)
\(=\dfrac{1998.1996}{1997.1996-1995.1996}+\dfrac{1997+1995}{1997.1996-1995.1996}\)
\(=\dfrac{1998.1996}{1996\left(1997-1995\right)}-\dfrac{1997-1995}{1996\left(1997-1995\right)}\)
\(=\dfrac{1998}{1997-1995}-\dfrac{1}{1996}\)
\(=\dfrac{1998}{2}-\dfrac{1}{1996}\)
\(=999-\dfrac{1}{1996}\)
\(\approx998,99\)