Lời giải:
$\frac{1}{5\times 8}+\frac{1}{8\times 11}+\frac{1}{11\times 14}+...+\frac{1}{m\times (m+3)}=\frac{101}{1540}$
$\frac{8-5}{5\times 8}+\frac{11-8}{8\times 11}+\frac{14-11}{11\times 14}+...+\frac{(m+3)-m}{m\times (m+3)}=\frac{303}{1540}$
$\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{m}-\frac{1}{m+3}=\frac{303}{1540}$
$\frac{1}{5}-\frac{1}{m+3}=\frac{303}{1540}$
$\frac{1}{m+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}$
$\Rightarrow m+3=308$
$\Rightarrow m=308-3=305$
Lời giải:
$\frac{1}{5\times 8}+\frac{1}{8\times 11}+\frac{1}{11\times 14}+...+\frac{1}{m\times (m+3)}=\frac{101}{1540}$
$\frac{8-5}{5\times 8}+\frac{11-8}{8\times 11}+\frac{14-11}{11\times 14}+...+\frac{(m+3)-m}{m\times (m+3)}=\frac{303}{1540}$
$\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{m}-\frac{1}{m+3}=\frac{303}{1540}$
$\frac{1}{5}-\frac{1}{m+3}=\frac{303}{1540}$
$\frac{1}{m+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}$
$\Rightarrow m+3=308$
$\Rightarrow m=308-3=305$