\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{x.\left(x+3\right)}=\frac{101}{1540}\)
\(3.\left(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x.\left(x+3\right)}\right)=3.\frac{101}{1540}\)
\(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x.\left(x+3\right)}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{308}{1540}-\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{5}{1540}=\frac{1}{308}\)
=> x + 3 = 308
=> x = 308 - 3
=> x = 305
Vậy x = 305
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{x.\left(x+3\right)}=\frac{101}{1540}\)
\(3.\left(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x.\left(x+3\right)}\right)=3.\frac{101}{1540}\)
\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{5}{1540}=\frac{1}{308}\)
=> x + 3 = 308
=> x = 308 - 3
=> x = 305
Vậy x = 305