\(\frac{15}{4}+\frac{15}{28}+\frac{15}{70}+...+\frac{15}{x.\left(x+3\right)}=\frac{99}{20}\)
=> \(5.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{99}{20}\)
=> \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{99}{20}:5\)
=> \(1-\frac{1}{x+3}=\frac{99}{20}.\frac{1}{5}=\frac{99}{100}\)
=> \(\frac{1}{x+3}=1-\frac{99}{100}\)
=> \(\frac{1}{x+3}=\frac{1}{100}\)
=> x + 3 = 100
=> x = 100 - 3
=> x = 97