\(\frac{148-x}{25}+\frac{169-x}{23}+\frac{186-x}{21}+\frac{199-x}{19}=10\)
giải pt:
\(\frac{148-x}{25}\)+\(\frac{169-x}{23}\)+\(\frac{186-x}{21}\)+\(\frac{199-x}{19}\)=10
giải các phương trình sau
a) x+1/1 + 2x+3/3 + 3x+5/5+...+20x+39/39 = 22 + 4/3 +6/5 +....+ 40/39
b) x^4+x^3-4x^2+5x-3=0
c) x(x-1)(x-4)(x-5)=84
d) 148-x/25 +169-x/23 + 186-x/21 + 199-x/19 = 10
Giải Phương Trình:
\(\frac{148-x}{25}+\frac{169-x}{23}+\frac{186-x}{21}+\frac{199-x}{19}=10\)
Mấy bạn giúp mink vs nha ai giải đúng và rõ ràng mink sẽ tick hứa đấy^^
Nghiệm của phương trình 148-x/13+169-x/17+186-x/17+199-x/16=10. vậy x=
Giải phương trình :a; \(\frac{148-x}{25}+\frac{169-x}{23}+\frac{186-x}{21}+\frac{199-x}{19}=10\)
b, \(x^4+x^3-4x^2+5x-3=0\)
c,\(x^4-10.2^x+16=0\)
Giải pt
a)1/x-1-3x²/x³-1=2x/x²+x+1
b) 4x+5/x-1+2x-1/x+1=6
c) x+2/x-3+x-2/x+3=2(x²+6) /x²-9
d) 1/x-2+3=3x-2/x+2
e) 148-x/25+169-x/23+186-x/21+199-x/19=10
f) x+16/49+x+18/47=x+20/45-1
g) (x+2) (x+4) (x+6) (x+8) =-16
h) x³+3x²+3x+2=0
i) 4x/x²-5x+6+3x/x²-7x+6=0
Giải các phương trình sau :
a. 3x - 2 (5 + 2x) = 45 - 2x
b. \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
c.\(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)
d. (x - 1) (5x + 3) = (3x - 8) (x - 1)
e. (x - 1) (x2 + 5x - 2) - (x3 - 1) = 0
f.\(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\)
g. \(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+1}{61}+\frac{x+7}{59}\)
h.\(\frac{x+5}{2015}+\frac{x+4}{2014}+\frac{x+4}{1002}+\frac{x+6}{1003}=6\)
k.\(\frac{148-x}{25}+\frac{169-x}{23}+\frac{186-x}{21}+\frac{199-x}{19}=10\)
Giải các phương trình sau :
a. 3x - 2 (5 + 2x) = 45 - 2x
b. \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
c.\(\frac{5\left(x-1\right)+2}{6}-\frac{7x-1}{4}=\frac{2\left(2x+1\right)}{7}-5\)
d. (x - 1) (5x + 3) = (3x - 8) (x - 1)
e. (x - 1) (x2 + 5x - 2) - (x3 - 1) = 0
f.\(\frac{x-17}{33}+\frac{x-21}{29}+\frac{x}{25}=4\)
g. \(\frac{x+1}{65}+\frac{x+3}{63}=\frac{x+1}{61}+\frac{x+7}{59}\)
h.\(\frac{x+5}{2015}+\frac{x+4}{2014}+\frac{x+4}{1002}+\frac{x+6}{1003}=6\)
k.\(\frac{148-x}{25}+\frac{169-x}{23}+\frac{186-x}{21}+\frac{199-x}{19}=10\)