\(\dfrac{1}{4}+\left(-\dfrac{1}{2}+\dfrac{2}{3}\right)=\dfrac{1}{4}+\dfrac{1}{6}=\dfrac{3}{12}+\dfrac{2}{12}=\dfrac{5}{12}\)
\(=\dfrac{1}{4}+\dfrac{1}{6}=\dfrac{5}{12}\)
1/4+(−1/2+2//3)=1/4+1/6=3/12+2/12=5/12
\(\dfrac{1}{4}+\left(-\dfrac{1}{2}+\dfrac{2}{3}\right)=\dfrac{1}{4}+\dfrac{1}{6}=\dfrac{3}{12}+\dfrac{2}{12}=\dfrac{5}{12}\)
\(=\dfrac{1}{4}+\dfrac{1}{6}=\dfrac{5}{12}\)
1/4+(−1/2+2//3)=1/4+1/6=3/12+2/12=5/12
a,1/3 .(x-2/5)=3/4 b, 7/3:(x-2/3)=4/5 c,1/3.(x-2/5)=4/5 d, 2/3.(x-1/2)-1/4.(x-2/5)=7/3 e,3/7 .(x-2/3)+1/2=5/4.(x-2) f,1/2.(x-3)+1/3.(x-4)+1/4.(x-5)=1/5 g,[2/3.(x-1/2)-4/5]:(x-1/3)=21/5 h, {x-[1/2.(x-3)+11/5]}:(x-1/2)=3/5 i,x.(x-2/5)-(x+2).x+11/4=4/3
1. (1+1/2).(1+1/2^2).(1+1/2^3)....(1+1/2^100) < 3
2. 1/(5+1)+2/(5^2+1)+4/(5^4+1)+...+ 1024/(5^1024+1) <1/4
3. 3/(1!+2!+3!)+4/(2!+3!+4!)+...+100/(98!+99!+100!) <1/2
1+1+1+1+1+1+2+2+2+2+2+2+3+3+3+4+4+4+4+4+4+4+4+1234567890 có chia hết cho 3 không?
Cho dãy : 1/1 ; 2/1 ; 1/2 ; 3/1 ; 2/2 ; 1/3 ; 4/1 ; 3/2 ; 2/3 ; 1/4 ; 5/1 ; 4/2 ; 3/3 ; 2/4 ; 1/5 ;... . Tìm số thứ 2001 của dãy
1. 3/2 x 4/5 - x = 2/3
2.x x3 1/2=3 1/3 : 4 1/4
3. 5 2/3:x = 3 2/3- 2 1/2
4. 3/2+1/2:x=3 1/2
5.3/4 x x - 1/5=1/5:1/8
Chứng minh rằng:
a,A=1/2+1/2^2+1/2^3+.+1/2^2<1
b,B=1/3+1/3^2+1/3^3+...+1/3^n<1/2
c,B=1/2-1/2^2+1/2^3-1/2^4+...+1/2^2015-1/2^2016<1/3
d,D=1/3+2/3^2+3/3^3+4/3^4+...+100/3^100<3/4
Chứng minh rằng:
a) A=1/2+2/2^2+3/2^3+4/4^4+...+100/3^100<2
b) B=1/3+2/3^2+3/3^3+...+100/3^100<3/4
c) C=1/2^3+1/3^3+1/4^3+...+1/n^3<1/4 (n thuộc N; n> hoặc = 2)
d) D=1/3^3+1/4^3+1/5^3+...+1/n^3<1/12 (n thuộc N; n> hoặc =3)
e) E=2/1*4/3*6/5*...*200/199<20
f) F=3/4+5/56+7/144+...+2n+1/n^2+(n+1)^2 ( n nguyên dương)
g) G=1/2*(1/6+1/24+1/60+...+1/9240)>57/62
h) H=1/31+1/32+1/33+...+1/2048>3
i) I=(1-1/3)*(1-1/6)*(1-1/10)*...*(1-1/253)<2/5
j) J=1/2!+2/3!+3/4!+...+n-1/n!<2
k) K=1/2!+5/3!+11/4!+...+n^2+n-1/(n+1)!<2 (n nguyên dương)
l) 1/6<L=1/5^2+1/6^2+1/7^2+...+1/100^2<1/4
1-1/1+2-2/3+3-3/4+4-1/4-3-1/3-2-1/2-1
b) 1 - 1/2 + 2 - 2/3 + 3 - 3/4 +4 - 1/4 - 3 - 1/3 - 2 - 1/2 -1
A=1+1/2(1+2)+1/3(1+2+3)+1/4(1+2+3+4)+...+1/16(1+2+3+4+...+16)