B=1+3+3^2+3^3+..+3^100
B=1+3+3^2+3^3+..+3^100
3B = 3 + 3^2 ... 3^101
3B - B = 2B = (3 + 3^2 ... 3^101) - (1+3+3^2+3^3+..+3^100)
B = (3^101 - 1) : 2
Đặt A=1+3+3^2+3^3+...+3^100
\(\Rightarrow\)3A=3+3^2+3^3+...+3^101
Ta có : 3A-A=(3+3^2+3^3+...+3^101)-(1+3+3^2+3^3+..+3^100)
2A=3+3^2+3^3+...+3^101-1-3-3^2-3^3-..-3^100
2A=3^101-1\(\Rightarrow\)\(A=\frac{3^{101}-1}{2}\)
3A=31+32+33+.........+3101 (1)
A=30+31+32+.........+3100 (2)
Ta lấy (1)-(2) => 2A=3101-30=3101-1
À cho mình bổ sung thêm :
2A=3101-1
=> A=\(\frac{3^{101}-1}{2}\)