Ta có
\(a^3+b^3+...+n^3=\left(a+b+...+n\right)^2\)
\(\Rightarrow1^3+2^3+3^3+...+10^3=\left(1+2+3+...+100\right)^2\)
\(1+2+3+...+100\)
Số số hạng
\(\left(100-1\right):1+1=100\)
Tổng
\(\left(100+1\right)\cdot100:2=5050\)
\(5050^2=25502500\)
Vậy \(1^3+2^3+...+100^3=25502500\)