1/3 + 1/6 + 1/10 + ... + 2/x(x+1) = 2007/2009
<=> 2(1/6 + 1/12 + 1/20 + ... + 1/x(x+1) = 2007/2009
<=> 2[(1/2 - 1/3) + (1/3 - 1/4) + (1/4 - 1/5) + ... + 1/x - 1/(x+1)] = 1 - 2/2009
<=> 2[1/2 - 1/(x+1)] = 2(1/2 - 1/2009)
<=> x+1 = 2009
<=> x = 2008
****