Sửa đề: \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+..+\frac{1}{120}\)
Đặt A=\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{120}\)
\(\frac{1}{2}A=\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{120}\right)\)
\(\frac{1}{2}A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{240}\)
\(\frac{1}{2}A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{15\cdot16}\)
\(\frac{1}{2}A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{15}-\frac{1}{16}\)
\(\frac{1}{2}A=\frac{1}{2}-\frac{1}{16}\)
\(A=\frac{7}{16}:\frac{1}{2}\)
\(A=\frac{7}{8}\)
Đúng 0
Bình luận (0)