PL

1/3+1/15+1/35+...+1/9999

HB
30 tháng 6 2016 lúc 12:51

\(=\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+.......+\frac{1}{99\cdot101}=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}=1-\frac{1}{101}=\frac{100}{101}\)

Bình luận (0)
NT
30 tháng 6 2016 lúc 12:56

\(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+.....+\frac{1}{9999}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{99.}\)\(\frac{1}{99.101}\)

                                                            \(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{101}\)

                                                              \(=1-\frac{1}{101}=\frac{100}{101}\)

                                                          

Bình luận (0)

Các câu hỏi tương tự
VT
Xem chi tiết
LM
Xem chi tiết
AO
Xem chi tiết
VN
Xem chi tiết
VN
Xem chi tiết
H24
Xem chi tiết
NM
Xem chi tiết
LQ
Xem chi tiết
SL
Xem chi tiết