\(\left(\frac{1}{27}\right)^{10}\&\left(\frac{1}{243}\right)^7\)
\(\left(\frac{1}{27}\right)^{10}=\left(\frac{1}{3^3}\right)^{10}=\frac{1}{3^{30}}\)
\(\left(\frac{1}{243}\right)^7=\left(\frac{1}{3^5}\right)^7=\frac{1}{3^{35}}\)
Vậy \(\left(\frac{1}{27}\right)^{10}>\left(\frac{1}{243}\right)^7\)
Ta có :
\(\left(\frac{1}{27}\right)^{10}=\left(\frac{1}{3^3}\right)^{10}=\frac{1}{3^{30}}\)
\(\left(\frac{1}{243}\right)^7=\left(\frac{1}{3^5}\right)^7=\frac{1}{3^{35}}\)
Do : \(\frac{1}{3^{30}}>\frac{1}{3^{35}}\left(3^{30}< 3^{35}\right)\)
\(\Rightarrow\left(\frac{1}{27}\right)^{10}>\left(\frac{1}{243}\right)^7\)