\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}=\frac{50-1}{100}=\frac{49}{100}\)
1/2*3+1/3*4+.....+1/99*100
=1/2-1/3+1/3-1/4+........1/99*100
=1/2+(-1/3+1/3)+(-1/4+1/4)+.........+(-1/99+1/99)-1/100
=1/2-1/100
=50/100-1/100
=49/100