12.22.32-\(\frac{2015}{1.2.3}\)+12.22.32.42-\(\frac{2015}{1.2.3.4}\)
=36 +576 - (\(\frac{2015}{1.2.3}\)+\(\frac{2015}{1.2.3.4}\))
= 612-\(\frac{10075}{24}\)
=\(\frac{4613}{24}\)
xin lỗi nhưng kq đâu giống vs mk rrrr
12.22.32-\(\frac{2015}{1.2.3}\)+12.22.32.42-\(\frac{2015}{1.2.3.4}\)
=36 +576 - (\(\frac{2015}{1.2.3}\)+\(\frac{2015}{1.2.3.4}\))
= 612-\(\frac{10075}{24}\)
=\(\frac{4613}{24}\)
xin lỗi nhưng kq đâu giống vs mk rrrr
tính giá trị của biểu thức B=1^2.2^2.3^2-2015/1.2.3 + 2^2.3^2.4^2-2015/2.3.4 + ...... + 2013^2.2014^2.2015^2-2015/2013.2014.2015
Mk cần gấp!!
c/minh: A=3/1^2.2^2+5/2^2.3^2+7/3^2.4^2+.......+4031/2015^2.2016^2<1
chứng minh \(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{4031}{2015^2.2016^2}< 1\)
CHỨNG MINH RẰNG : \(A=\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+...+\frac{4031}{2015^2.2016^2}< 1\)
CHỨNG MINH RẰNG
\(\frac{3}{1^2.2^2}+\frac{5}{2^2.3^2}+\frac{7}{3^2.4^2}+......+\frac{4031}{2015^2.2016^2}< 1\)
Tính:
f) F= 1.2+2.3+3.4+...+n(n+1)
g) G= 1.2.3+2.3.4+3.4.5+...+99.100.101
h) H= 1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)
i) I= 1.3+2.4+3.5+...+99.100
j) J= 1.4+2.5+3.6+...+99.102
3/1^2.2^2+5/2^2.3^2+7/3^2.4^2+...+31/15^2.16^2 <1
CMR : 3/1^2.2^2 + 5/2^2.3^2 + 7/3^2.4^2 + ... + 19/9^2.10^2 < 1
Tính các tổng sau:
1.100+2.99+3.98+...+98.3+99.2+100.19+99+999+....+999...9991.2+2.3+3.4+...+n(n+1)2.4+4.6+6.8+....+2n(2n+2)1.3+2.4+3.5+...+n(n+2)1.2.3+2.3.4+3.4.5+....+n(n+1).(n+2)12+22+32+...+n2