CV

1/2+1/4+1/8+...+1/512+1/1024

H24
28 tháng 7 2018 lúc 21:22

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{256}-\frac{1}{512}+\frac{1}{512}-\frac{1}{1028}\)

\(=1-\frac{1}{1028}\)

\(=\frac{1027}{1028}\)

Bình luận (0)
KS
28 tháng 7 2018 lúc 21:34

\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)

\(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)

\(\Rightarrow2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)

\(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)\)

\(A=1-\frac{1}{2^{10}}\)

\(A=\frac{2^{10}-1}{2^{10}}\)

Tham khảo nhé~

Bình luận (0)

Các câu hỏi tương tự
BL
Xem chi tiết
NC
Xem chi tiết
NM
Xem chi tiết
DT
Xem chi tiết
NA
Xem chi tiết
DH
Xem chi tiết
HD
Xem chi tiết
NH
Xem chi tiết
PL
Xem chi tiết