\(S=\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{20}\)
\(\Rightarrow\frac{1}{2}S=\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{21}\)
\(\Rightarrow\frac{1}{2}S-S=\left(\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{21}\right)-\left(\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{20}\right)\)
\(\Rightarrow-\frac{1}{2}S=\left(\frac{1}{2}\right)^{21}-\frac{1}{2}\)
\(\Rightarrow S=\left(\left(\frac{1}{2}\right)^{21}-\frac{1}{2}\right):\frac{-1}{2}\)
Đúng 0
Bình luận (0)