1/2 + 1/6 + 1/12 + ... + 1/9900 + 1/10100
= 1/1.2 + 1/2.3 + 1/3.4 +... +1/99.100 + 1/100.101
= 1/1 - 1/2 + 1/2 + 1/3 - 1/3 + 1/4 +... + 1/99 - 1 / 100 + 1/100 - 1/101
= 1/1 - 1/101
= 100 /101
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+.....+\frac{1}{9900}+\frac{1}{10100}\)
=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{99.100}+\frac{1}{100.101}\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)
=\(1-\frac{1}{101}\)
=\(\frac{100}{101}\)
chào mọi người mình là T Gaming đây ! hello
`1/2 + 1/6 + 1/12 + ... + 1/10100`
`= 1/(1 . 2) + 1/(2 . 3) + 1/(3 . 4) + ... + 1/(100 . 101)`
`= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/100 + 1/100 - 1/101`
`= 1/1 - 1/101`
`= 100/101`
=1/1×2+1/2×3+1/3×4+...+1/99×100+
1/100+101
=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100+1/100-1/101
=1-1/101
=100/101