\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)=\frac{1}{2}.\frac{98}{303}=\frac{49}{303}\)