Đặt biểu thức trên là A. Ta có:
3A = 3/1.4 + 3/4.7 + 3/7.10 + ... + 3/2016/2019
3A = 1-1/4 +1/4-1/7+1/7-1/10/+ ... + 1/2016-1/2019
3A = 1-1/2019=2018/2019
A =1009/2019
Ta có:
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2016.2019}\)
\(=\frac{1}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2016.2019}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+....+\frac{1}{2016}-\frac{1}{2019}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1}-\frac{1}{2019}\right)\)
\(=\frac{1}{3}.\frac{2018}{2019}\)
\(=\frac{2018}{6057}\)
\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{2016.2019}\)
\(=\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{2016.2019}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{2016}-\frac{1}{2019}\right)\)
\(=\frac{1}{3}.\left(1-\frac{1}{2019}\right)\)
\(=\frac{1}{3}.\left(\frac{2019}{2019}-\frac{1}{2019}\right)\)
\(=\frac{1}{3}.\frac{2018}{2019}\)
\(=\frac{2018}{6057}\)
1/1.4+1/4.7+1/7.10+...+1/2016.2019
ta có:a=1/1.4+1/4.7+1/7.10+....1/2016.2019
=>3a= 3/1.4+3/4.7+3/7.10+...3/2016.2019
=>3a=1-1/4+1/4-1/7+1/7-1/10+...1/2016-2019
=>3a=1-1/2019
=>3a=2018/2019
a=2018/2019:3
a=2018/6057