Ta viết lại tổng này thành:
\(P=\left(\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{97.99}\right)+\left(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{98.100}\right)-\dfrac{49}{99}\)
\(P=\dfrac{1}{2}.\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{97.99}\right)+\dfrac{1}{2}\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{98.100}-\dfrac{49}{99}\right)\)
\(P=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)-\dfrac{49}{99}\)
\(P=\dfrac{1}{2}\left(1-\dfrac{1}{99}\right)+\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{100}\right)-\dfrac{49}{99}\)
\(P=\dfrac{1}{2}-\dfrac{1}{198}+\dfrac{1}{4}-\dfrac{1}{200}-\dfrac{49}{99}\)
\(P=\dfrac{49}{200}\)