TH

1/(1.3)+1/(2.4)+1/(3.5)+1/(4.6)+...+1/(2021.2023)

LP
18 tháng 3 2023 lúc 20:44

\(P=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+\dfrac{1}{4.6}+...+\dfrac{1}{2021.2023}\)

Ta sẽ "tách" P làm 2 phần:

\(A=\dfrac{1}{1.3}+\dfrac{1}{3.5}+\dfrac{1}{5.7}+...+\dfrac{1}{2021.2023}\)

\(B=\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{2020.2022}\)

Do đó \(P=A+B\)

Ta có \(A=\dfrac{1}{2}\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2021.2023}\right)\)

\(A=\dfrac{1}{2}\left(\dfrac{3-1}{1.3}+\dfrac{5-3}{3.5}+\dfrac{7-5}{5.7}+...+\dfrac{2023-2021}{2021.2023}\right)\)

\(A=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2021}-\dfrac{1}{2023}\right)\)

\(A=\dfrac{1}{2}\left(1-\dfrac{1}{2023}\right)\) 

\(A=\dfrac{1011}{2023}\)

Mặt khác, \(B=\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{2020.2022}\)

\(B=\dfrac{1}{2}\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{2020.2022}\right)\)

\(B=\dfrac{1}{2}\left(\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+\dfrac{8-6}{6.8}+...+\dfrac{2022-2020}{2020.2022}\right)\)

\(B=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2020}-\dfrac{1}{2022}\right)\)

\(B=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2022}\right)\)

\(B=\dfrac{505}{2022}\)

Từ đó \(P=A+B=\dfrac{1011}{2023}+\dfrac{505}{2022}=\dfrac{3065857}{4090506}\)

 

Bình luận (0)

Các câu hỏi tương tự
NA
Xem chi tiết
VT
Xem chi tiết
NV
Xem chi tiết
NS
Xem chi tiết
NN
Xem chi tiết
RT
Xem chi tiết
LN
Xem chi tiết
BN
Xem chi tiết
H24
Xem chi tiết