NM

1+1/2+1/3+1/4+...+1/2020

H24
19 tháng 5 2022 lúc 10:10

\(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2020}\)

\(=\dfrac{1}{1+2+3+...+2020}\)

\(=\dfrac{1}{\left(2020-1\right)+1}\)

\(=\dfrac{1}{2020}\)

Bình luận (0)