VH

1/1.2+1/2.3+1/3.4+...+1/x(x+1)=2/3

VH
4 tháng 2 2018 lúc 21:01

Ta có: 1/1.2+1/2.3+1/3.4+...+1/x(x+1)=2/3

=> 1-1/2+1/2-1/3+1/3-1/4+...+1/x-1/x+1=2/3

=>1-1/x+1=2/3

=>1/x+1=1/3

=>3=x+1

=>x=2

Bình luận (0)
TT
4 tháng 2 2018 lúc 21:01

Ta có\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}=\frac{2}{3}\)

=>\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2}{3}\)

=>\(1-\frac{1}{x+1}=\frac{2}{3}\)

=>\(\frac{1}{x+1}=1-\frac{2}{3}\)

=>\(\frac{1}{x+1}=\frac{1}{3}\)

=>\(x+1=3\)

=>\(x=2\)

Bình luận (0)
PD
4 tháng 2 2018 lúc 21:01

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2}{3}\)

\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x-1}=\frac{2}{3}\)

\(\Rightarrow1-\frac{1}{x-1}=\frac{2}{3}\)

\(\Rightarrow\frac{1}{3}=\frac{1}{x-1}\)

\(\Rightarrow x=3+1=4\)

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
H24
Xem chi tiết
CP
Xem chi tiết
LH
Xem chi tiết
PH
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
KC
Xem chi tiết
KC
Xem chi tiết