VD

1+(1+2)+(1+2+3)+...+(1+2+3+4+...+99+100)/(1*100+2*99+...+99*2+100*1)*2013

OM
7 tháng 8 2018 lúc 8:47

Ta chia thành hai vế (1) và (2)

Số số hạng (1) là :

( 101 - 1 ) : 1 + 1 = 101  ( số )

Tổng (1) là :

( 101 + 1 ) x 101 : 2 = 5151

Tự tính tiếp

Bình luận (0)
DH
27 tháng 5 2021 lúc 10:48

\(1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+99+100\right)\)

\(=\left(1+1+1+...+1\right)+\left(2+2+...+2\right)+\left(3+...+3\right)+...+\left(99+99\right)+100\)

\(=1.100+2.99+3.98+...+99.2+100.1\)

Do đó kết quả của phép tính cần tìm là: 

\(\frac{1.100+2.99+...+99.2+100.1}{\left(1.100+2.99+...+99.2+100.1\right).2013}=\frac{1}{2013}\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
TG
Xem chi tiết
PD
Xem chi tiết
PD
Xem chi tiết
UP
Xem chi tiết
PA
Xem chi tiết
VD
Xem chi tiết
PL
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết